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Abstract-A generalized mathematical scheme is developed to simulate the turbulent dispersion of pol- 
lutants which are adsorbed or deposit to the ground. The scheme is an analytical (exact) solution of the 
atmospheric diffusion equation with height-dependent wind speed and eddy diffusivities, and with 
a Robin-type boundary condition at the ground. Unlike published solutions of similar problems where 
complex or non-programmable (e.g., hypergeometric or Kummer) functions are obtained, the analytical 
solution proposed herein consists of two previously derived Green’s functions (modified Bessel functions) 
expressed in an integral form that is amenable to numerical integration. In the case of invariant wind speed 
and turbulent eddies with height (i.e., Gaussian deposition plume), the solution reduces to an equivalent 
well-known heat conduction solution. The physical behavior represented by the Green’s functions compris- 
ing the solution can be interpreted. This generalized scheme can be modified further to account for 
inversion effects or other meteorological conditions. The solution derived is useful for examining the 
accuracy and performance of sophisticated numerical dispersion models, and is particularly suitable for 
modeling the transport of pollutants undergoing strong surface adsorption or high depositional losses. 
Copyright 0 1996 Elsevier Science Ltd 
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NOMENCLATURE 

G,(x> Y) crosswind dispersion factor, L-’ for point 
source, dimensionless for line source 

G,(x,, z,; x, z)vertical Green’s function, L-Q 
Gz.j vertical sub-Green function, L-% 
h 
K, 

Kz 
L 
L* 

Ls 

characteristic mixing height, L 
vertical eddy diffusion coefficient at z = z,,, 
L*t-’ 
vertical eddy diffusivity L2t-’ 
differential operator, de’fined in equation (1) 
adjoint differential operator, defined in equa- 
tion (3) 
length of line source, L 

power-law constant of wind profile, dimen- 
sionless 
power-law constant of vertical eddy diffusivity 
profile, dimensionless 
parameter in power-law wind profile, L’-“t-’ 
parameter in power-law vertical eddy diffus- 
ivity profile, Lz-Y1 
constants 
ambient concentration of the contaminant, 
ML-3 
characteristic concentration, MLm3 
ambient concentration of the contaminant 
from infinite line source of unit strength, same 
units as G,, L-‘t 

*Author to whom correspondence should be addressed. 

u 
V 

0.3 
x, Y, z 

x0, zo 
% Ys, zs 
Zb 

Z, 

erf 
erfc 

: 
l- 
P 
UY 
5 

emission strength of point source, Mt-’ 
emission strength of line source, ML-‘t-l 
source term in atmospheric diffusion equation, 
ML-3t-’ 
wind speed, Lt-’ 
general function to replace Gz,O in equation 
uw 

dry deposition velocity, Lt-’ 
Cartesian coordinates in downwind, cross- 
wind, and vertical directions (positive up- 
wards), respectively, L 
independent variables, L 
location of the point or line source, L 
lower boundary height where deposition flux 
is measured, L 
reference height where measurements are 
taken, L 
error function 
complementary error function 
modified Bessel function of the first kind 
Dirac delta function 
Gamma function 
= (1 - B)/(uI - /3’ + 2), dimensionless 

standard deviation (diffusion coefficient), L 
dummy variable in integral. 

1. INTRODUCTION 

Dry deposition is an important removal process for 
some atmospheric pollutants. The uptake of the 
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pollutants at the earth’s surface, either by soil, water, or 
vegetation, reduces airborne concentration levels at 
locations far downwind, while potentially increasing 
exposure levels at nearby locations due to the depos- 
ited material. Mathematically modeling the transport 
of airborne pollutants with dry deposition was first 
attempted by modifying the Gaussian plume equation 
to account for this removal process. These modifica- 
tions have included source depletion models (Cham- 
berlain, 1953; Overcamp, 1976) and surface depletion 
models (Horst, 1977, 1984). A more theoretical ap- 
proach to simulating the dispersion-deposition process 
focused on solving the atmospheric diffusion equation 
with a radiation boundary condition at the ground 
(e.g., Seinfeld, 1986). Early analytical solutions (Smith, 
1962; Ermak, 1977; Rao, 1981) retained the framework 
of the Gaussian plume approach, i.e., invariant wind 
speed and eddies with height. More recent efforts to 
solve the diffusion equation have utilized height-depen- 
dent wind speed and eddy diffusivities (Horst and 
Slinn, 1984; Koch, 1989; Chrysikopoulos et al., 1992). 
However, these solutions either contain the unknown 
in an integral equation or include a hypergeometric 
function, both of which pose difficulties in computer 
programming. Those approaches are also restricted to 
the special case where the source is located at ground 
level. To the authors’ knowledge, no analytical solution 
has been published which considers a more general 
case (e.g., near-ground level emissions at an arbitrary 
source height) and provides a solution that is amenable 
to modeling applications. 

This paper presents a generalized mathematical 
scheme that solves the atmospheric diffusion equation 
with arbitrary power-law functions of wind speed and 
eddy diffusivities. A boundary condition of the Robin 
type is imposed at the ground to simulate the de- 
position process. The source can be located any- 
where within the region of interest. This scheme builds 
upon the authors’ previous work in which Green’s 
functions were systematically derived as building 
blocks of the analytical solutions for various homo- 
geneous boundary types. Although relevant results 
will be summarized where needed, readers interested 
in the details should refer to the authors’ earlier paper 
(Lin and Hildemann, 1996). 

In what follows, an introduction to the powerful 
Green’s function method is presented. Step-by-step 
procedures for obtaining the new analytical solution 
based on this solving technique are described, fol- 
lowed by a discussion of the results. 

2. ATMOSPHERIC DIFFUSION EQUATION 

The three-dimensional atmospheric diffusion equa- 
tion becomes analytically solvable for the particular 
case where the wind speed and the lateral eddy diffus- 
ivity have the same, but arbitrary, power-law depend- 
ence on height (Yeh, 1975). Under this condition, 
the three-dimensional diffusion equation can then be 

separated into a pair of two-dimensional (x-z and 
x-y) diffusion equations. Since the boundary condi- 
tions are to be placed in the vertical z direction, with 
no effect on the diffusion equation in the x-y plane, 
the two-dimensional equation in the x-z direction will 
be considered to simplify the discussion. The concen- 
trations obtained hereafter can be multiplied with 
ease by a cross-wind dispersion factor, G,, to include 
lateral diffusion (Lin and Hildemann, 1996; see Table 
1 for a summary). 

The two-dimensional steady-state diffusion equa- 
tion for a nonreactive, continuously released contam- 
inant is equivalent to the diffusion equation used for 
an infinite line source: 

u( z T =gKz(zPp) + s(x,z) 
) wx, 4 

where x and z are the Cartesian coordinates in the 
downwind direction and the vertical (positive up- 
wards) direction, respectively, C(x, z) is the ambient 
concentration of the contaminant, and S(x, z) is the 
source strength function (mass/v01 air-time). Assump- 
tions in the above atmospheric difision equation 
include unidirectional wind, gradient turbulent flux 
(K-theory), and negligible turbulent diffusion (com- 
pared to advection) in the wind direction. In order to 
obtain analytical (exact) solutions, wind speed U(z) 
and the vertical eddy diffusivity K,(z) are approxim- 
ated by the following power-law functions of height: 

U(z) = U(z,) ; 0 
a 

= az’, U(zr) a=- 
8 

K,(z) = K,(z,) ; 
0 

B = bz@, b = y 

where U(z,) and K&) are the measured wind speed 
and vertical eddy diffusivity at a reference height zr, 
and a, b, CI, 8, are constants that depend on atmo- 
spheric stability and surface roughness (Brutsaert and 
Yeh, 1970a, b; Yeh and Huang, 1975). 

3. GREEN’S FUNCTION METHOD 

The Green’s function concept (Roach, 1970; Green- 
berg, 1971; Stakgold, 1979) is a powerful tool with 
which to analyze partial differential equations. Be- 
cause it is especially useful for boundary value prob- 
lems with complicated boundary conditions and 
Dirac delta functions, it merits a brief introduction. 
The two-dimensional atmospheric diffusion equation 
will be used as an example for illustration. By defining 
a differential operator L acting on argument C(x, z), 
and substituting in the power-law expressions for U(z) 
and K=(z), the atmospheric diffusion equation can be 
recast as follows: 

Lcctxo,zo)l = g ~z~ 
0 ( X(x0, zo) 

aZ 

0 > 

_ az”o ““‘a”,“, zo) 
0 

(1) 
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Table 1. Cross-wind dispersion factor G, for three-dimensional dispersion-deposition modeling, 
C(x, Y, z) = Q x C,(x, z) x G, 

Source type Emission strength Q (units) Cross-wind dispersion factor G, (units) 

Point source 

Finite line source 

Infinite line source QdWec-4 G,=l(-) 

Note: C,(x, z): ambient concentration from an infinite line source of unit strength (derived in this paper); erf: error function; 
xs, ys: coordinates of the point source; Ls: length of the line source; u,(x): standard deviation or turbulent diffusion coefficient 
in cross-wind direction evaluated at x. 

LCC(xo, zo)l = - S(x0, zo) (2) 

where x0 and z. have been used as independent vari- 
ables instead of x and z for the purpose of ending up 
with C(x, z), rather than C(xo, ZO), in the solution 
(Greenberg, 1971). Define another (similar) differential 
operator L* (known as an adjoint operator in math- 
ematical physics) acting on argument G,(xo, ZO; x, z), 
the Green’s function, with the sign of the first-order 
differential term in L reversed. Assign its value to be 
a two-dimensional Dirac delta function 
6(x0 - x)d(zo - z): 

L*[G,(xo, z,,;x, z)] =; 
0 

bzt aGz(x~zzo~x~ ‘) 
0 > 

+ az”o Wyo; x, 4 (3) 

0 

L*[Gz(x,,, zo; x, z)] = - 6(x0 - x)d(zo - z) (4) 

where x and z are the “original” independent vari- 
ables. For the analyses presented in this paper, the 
domain will be assumed to have no upper bound in 
the vertical direction, allowing contaminants to dif- 
fuse freely with no interference from an inversion 
layer. Multiplying equation (2) by G&o, ZO; x, z) and 
equation (4) by C(XO, ZO), subtracting one from the 
other, integrating the result over its domain (x0 from 
0 to x, zo from 0 to co), and transforming the double 
integral into a single boundary integral by the diver- 
gence theorem, we obtain the unknown C(x, z) with- 
out actually solving the differential equation: 

C(x, z) = - ,%? [Wxo, zo; x, z) C(xo, zo)lL = o dzo 

(5,) 
x m 

+ ss G&co, zo; x, z) S(xo, zo) dzo dxo 
0 0 

(5,) 

aaxo, zo) 
aZ 

0 

- C(x0, zo) 
aG,(xo, zo; x, z) II =O = m 

azo 
dxo (5s) 

LO = 0 

In this equation, the signs of the outward normal of 
a differential area from the divergence theorem have 
been incorporated into the upper and lower limits of 
the vertical bars, and the causality condition (Yeh and 
Brutsaert, 1971; Beck et al., 1992) has been applied to 
remove the upper limit in integral (5,). In equation (5), 
the concentration C(x, z) has been expressed in terms 
of the Green’s function G,(xo, ZO; x, z). The three inte- 
grals, (5i)-(5& represent the pulse contributions from 
the “initial” condition x0 = 0, the source function 
S(x0, ZO), and the boundary conditions, respectively. 

The major advantage of this method is that, once 
the Green’s function is known, the solutions of differ- 
ent but similar problems can be obtained by adroit 
manipulations of these three integrals. For example, 
a variety of boundary conditions, either homogene- 
ous, nonhomogeneous or nonlinear, can be incorpor- 
ated into integral (5,) easily (as will be shown in the 
following sections). In addition, the equation is writ- 
ten in an integral form-a “smoother” operator for 
numerical evaluation than a differential operator, 
with which one would have to deal if one were to 
directly solve the original problem numerically. This 
method is most suitable for problems containing a 
Dirac delta function, because its “shifting” behavior 
(i.e., jf(<)?i([ - p)dl =f(p)) allows the integrations 
to be evaluated immediately. The difficulty, however, 
is to find the Green’s function that satisfies equation 
(4). The applicability of the method thus rests upon 
whether such a Green’s function exists. 

Equations of diffusion, such as the atmospheric 
diffusion equation, often involve space or time Dirac 
delta terms where pollution sources are “initiated”. 
There are two ways to stipulate this source informa- 
tion (e.g., Seinfeld, 1986; Deng and Horne, 1993) 
which will provide a condition on x0 needed for ana- 
lytical solution. One approach is to place the source 
(Dirac delta) at the location x0 = xs = 0 (Calder, 
1961; Runca and Sardei, 1975; Maul, 1977; Demuth, 
1978; Tirabassi et al., 1986; Koch, 1989), by which (5,) 
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will vanish. The other is to include delta in the source 
term S (Melli and Runca, 1979; Robson, 1983; 
Chrysikopoulos et al., 1992), by which integral (5,) 
will vanish. The outcome will be the same either way. 
In other words, only two of the integrals, (5,) and (SJ, 
or (5,) and (5,), are needed. Though less commonly 
used in air dispersion modeling, the second approach, 
formulated as equation (6), will be adopted here for 
better flexibility and easier interpretation. This leaves 
us with integrals (5z) and (5,) for determining the 
unknown C(x, z). 

= = 6(x0 - xs)d(zo - zs). 
Qdxs, zs) (6) 

In equation (6), xs and zs can be thought of as 
coordinates of a line source, where a unit source 
strength has been assumed for convention. For this 
case, the concentration obtained later in the paper 
(written as C,) should be multiplied by Qi (kg s- ’ m- ‘) 
to adjust for the line source strength. 

The original differential equation, equation (2), re- 
quires two boundary conditions (at z = 0 and at 
z = cc in the present example for an unbounded 
atmosphere) to obtain a solution, as does the “shifted” 
problem, equation (4), to determine the Green’s 
function. The upper boundary condition at z = co for 
the unknown C, and also for the Green’s function 
G&a, za; x, z), assumes the disappearance of both 
pollutant and pollutant flux: 

C(xo, ZO) = 0 and 
dC(xo, zo) 

aZ = 0 at zo = co (7,) 
0 

Gz(xo,zo;x, 4 = 0 and 
aGz(xo, zo; x, 4 

aZ =0 at za=co. 
0 

(72) 

4 BOUNDARY CONDITIONS OF THE FIRST AND SECOND 

KINDS 

The lower boundary condition of the Green’s function 
is chosen depending on whether the original con- 
dition is the first kind (Dirichlet type, C(xo, zo) = 0 at 
z. = 0; total adsorption) or the second kind (Neumann 
type, X(x0, zo)/azo = 0 at z. = 0; total reflection) as 
follows: 

Dirichlet: 

G,(xo, z. = 0; x, z) = 0 if C(xo, z. = 0) = 0 (8,) 

Neumann: 

aG,(xo, zo; x, z) =0 if 
aC(xoP zo) 

azo 

= o 

azo Zg = 0 Z0 = 0 

(82) 

In either case, equation (5), which has been reduced 
to only integrals (5,) and (5a) by our decision to put 
the Dirac delta in the source term S, can be further 
reduced to integral (5,) only, because the boundary 

conditions given in equations (7) and (8) cause the 
boundary integral (5a) to vanish. Thus, 

X m 
C”(X, z) = 

ss 
G&o, zo; x, z) 6(x0 - xs) 

0 0 

x S(z, - zs) dzo dxo = G,(xs, zs; x, z) 

where the shifting behavior of the Dirac delta function 
has been utilized (i.e., arguments x0 and z. have been 
replaced by xs and zs, respectively), and G,(xo, zo; x, z) 
is to be determined by partial differential equation (4), 
the upper boundary condition (7z), and the lower 
boundary condition (8,) or (8z), depending on the 
criteria. The Green’s functions for these situations, 
that is, the homogeneous boundary conditions with- 
out the inversion layer present, as well as those with 
inversion effects, have been systematically derived in 
Lin and Hildemann (1996). These Green’s functions 
can serve as building blocks for other similar but 
more complicated problems, as will be demonstrated 
in the next two sections. 

5. BOUNDARY CONDITIONS OF THE THIRD KIND 

An example of a boundary condition of the third 
kind is the dry deposition process, which can be math- 
ematically formulated as (Monin, 1959; Calder, 1961): 

ud lim C(xO, za) = lim K,(za) 
ac(xo, zo) 

20 + Zb 20 + & 
dz 

0 

= Kb lim 
aC(xo, zo) 

20 - % azo 

where ud is the dry deposition velocity, whose 
depends on whether the ground surface is a 

sign 
sink 

(positive) or a source (negative) (Koch, 1989), za is the 
lower boundary height where deposition flux is meas- 
ured, and Kb is the vertical eddy diffusivity at z. = zb 
(i.e., & = bz{). Utilizing the approach of Gillani 
(1978), equation (9r) can be nondimensionalized, us- 
ing C, as a characteristic concentration, and h as 
a characteristic mixing height (Vdh/& represents the 
turbulent Sherwood number for vertical surface layer 
mass transfer): 

(91) 

a(c(xo, ZO)/&) Odh c(xo9 ~0) zo ~ as -+O 
a(zo/h) = Kb c, h 

(92) 

With a mixed-type boundary condition such as 
equation (9z), the boundary value problem can be 
solved, numerically or in limited cases analytically, by 
manipulating equation (5). For example, using the 
Green’s function of the Neumann type (G,(ZR,) in 
Table 2) as the building block (thus aG,(xo, zo; x, z)/ 
azolZO =0 = 0), and replacing X(x0, zo)/dzo in equa- 
tion (5) by u,C(x,, zO)/Kbr yields a nonhomogeneous 
integral equation of the second kind (Tricomi, 1985; 
Dettman, 1988; Sobolev, 1989)--an equation where 
the unknown appears inside an integral and on both 
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Table 2. Selected Green’s functions in an unbounded regiorP” 
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Type Conditions Green’s function 

Neumann G,(ZRB; xo, zo; x, z) = 

aGz(xo, %I; & 4 
dzo 

= 0 at z0 = 0 

Dirichlet 

Gz(xo, zo; x, z) = 0 at z. = 0 

(zzo)(l -8)/Z 

I-, 
2a(zzo)‘“-8 + zw 

b(a - p + 2)(x - x0) b(a - B + 2)‘(x - x0) 1 a(Za-8+2 +z;-#+2) 
b(a - /I + 2)7x - x0) 1 

Gz(ZAi xo, 20; x, 4 = 

(zzo)(l -n/2 

b(ct-p+2)(x-xo)1' 

2a(zzo)‘“-8+w2 

b(a-/S+2)'(x-xo) 1 a(z'-B+z +z;-B+z) 
b(a-B+2)‘(x-x0) 1 

Neumann Limiting case z0 = 0 G,(ZR4; x0, z,, = 0; x, z) = 

aG,(xo, zo; x, 4 a = 0 at 
z. 

= 0 
azo b(ct - /9 + 2)*(x - x0) 

1 (~+lMa-2+2) 

az”-8+2 

b(cc-~+2)2(~-~o) 1 
Gaussian plume type (a = /I = 0, p = 4) 

Neumann G,(Z’& xo, zo; x, z) = 

aG(xo, ZOP, 4 
az, 

= 0 at z. =0 
&&J{exp[ -$S$]+exp[ -SS]} 

Dirichlet G,(ZGs; xo, zo; x, z) = 

G,(xo, zo; X, z) = 0 at z. = 0 
@&{exp[ -$S$]-exp[ -S%J} 

“For a complete list of the Green’s functions, refer to Lin and Hildemann (1996). 
bExcept for G,(ZRJ, all the Green’s functions are reciprocal (interchangeable) between z. and z. 

sides of the equation: 

x m 

C(x, 2) = ss WZR3; xo, zo; x, 4 6(x0 - xs) 00 - zs)dzo dxo 
0 0 

+ Gz(ZR3; xo, zo; x, 4 
wxo, zo) 

aZ 

II 
dxo 

0 n,=r,-ra 

= G,(ZR,; xs, Zs; X, Z) + ud G,(Z&; xo, zo = 0; x, 4 CC(xo> zo)ll, =odxo. 

The first integration in the above equation has been be changed when it is evaluated. Yeh and Brutsaert 

carried out by replacing arguments x0 by xs and zo by (1970, 1971) have treated a similar equation of this 
zs, and the building block G,(ZR3; x0, zo; x, z) in the kind, but in the present case a solution in a math- 
second integral has been replaced by its limiting ematically closed form is very difficult to obtain 
case G,(ZR*; x0, z. = 0; x, z) from Table 2. Notice using their approach. A better alternative leading 
that since the second integral is to be evaluated at to a closed- form solution is described in the next 
the lower boundary, the sign of the integral should section. 
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6. GENERALIZED DEPOSITION SCHEME 

The boundary integral (Sz), which is the cause of 
the troublesome integral equation, can be avoided 
by imposing a boundary condition analogous to 
equation (9z) on G&e, zo; x, z): 

aG,(xo, Zo; X, Z) ud 

azo = KG,(~O, zo; x, z) at z. = 0. (10) 
b 

Integral (5,) is then eliminated as a result of bound- 
ary conditions (7), (9& and (10). Once the Green’s 
function of this situation is found, the unknown 
C(x, z) can be obtained immediately by exploiting the 
shifting behavior of the Dirac delta function. How- 
ever, the problem has not been solved, as the difficulty 
is merely switched from solving an integral equation 
to another equally difficult task-finding the Green’s 
function that satisfies equations (4), (7z), and (10). 

The mathematical scheme used here to accomplish 
this task is an extended version of the perturbation 
method described in Greenberg (1971), where a simple 
Laplace equation with constant coefficients was dis- 
cussed. Expanding G,(xo, zo; x, z) to be a 
power-law SUUmatiOU in IId/Kb : 

G&o, zo; x, 4 = G, o + (+%,I + (2-GI 

Inserting it into equation (4), and equating the coeffi- 
cients of the like powers of Ud/& on both sides of the 
equation, yields: 

for z. > 0 
L* CG,ol = - 4x0 - x)S(zo - z), (12) 

L*[G,J = 0 for j > 1. (13) 

Similarly, inserting the power expansion of G,(xo, zo; 
x, z) into the boundary condition given in equation 
(lo), and equating like powers of Ud/&, yields: 

3&3 
1+ . . . = s Gz,0 

azo 0 

+($Gz,i+($Gz,z+ ... (14) 

faGzo o )= 
azo 

aG, 1 
L-G,,o =0 

azo 

a& 2 
2 - G,, 1 = 0 
azo 

(150) 

(15,) 

(152) 

at z,=O aG=,3 G =o 

azo z*z 

(153) 

aG 
z,l - G,,j_l = 0. 
azo 

i f 

(15j) 

The first sub-Green function G,, o, satisfying equation 
(12) (or L* operator) and boundary condition ( 150), is 
the Neumann-type Green’s function G,(ZR3; x0, zo; 
x, z) (solved in Lin and Hildemann, 1996): 

Gz.o(xo, zo; x, z) = G,(ZR; xo, zo; x, z). (16) 

The other sub-Green functions G,,j will be determined 
from equation (13) and boundary conditions (15j) 
(j >, 1). Applying the L* operator to equation (15j) for 
j 2 2, and using the fact that all G,,j (j >, 1) satisfy 
L* for z. > 0 (i.e., equation (13)): 

L*[equation (15j)] = L* 1 
= Le a% 

[ 1 - 
azo 

- L* CGz,j- 11 

= &(L*[G,,I) - L*[G,,j- i] = 0 for j 2 2 
0 

we find that, although written to be valid only on the 
boundary z. = 0, due to the fact that L* is satisfied for 
z. > 0, each of the equations (15j) , except j = 0 and 1, 
is in fact valid in the entire region (i.e., for z. >/ 0) as 
a result of Green’s uniqueness theorem. However, 
equation (15,) applies only on the boundary because 
GI,O in it also simultaneously satisfies equation (15,). 
The key to this method is to find a less restrictive (or 
more general) function (denoted as V(x,, zo; x, z)) to 
replace G,, o in equation (15 i) so that equation (15 1) 
can also apply to the entire region, like the other (15J 
equations. From ‘Yeh and Brutsaert (1971) and Lin 
and Hildemann (1996), the general solution of 
L* without considering any boundary condition 
is the linear combination of the Neumann-type 
Green’s function (ZR,) and the Dirichlet-type 
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Green’s function (ZA,) (see Table 2): 

V (x0, zO; x, z) = A x Gz(ZR3; x0, z,,; x, z) 

+ B x G,(ZAz; x0, zc,; x, z) 

= A x G,, 0(x0, zo; x, 4 

+ B x G,(ZAz; x,,, zo; x, z) 

where A and B are constants to be determined. 

Atmospheric diffusion equation 

+g ( 
3 

) JJJ V dzo dzo dzo + ... 

j +il jJJ J, c b 
Vdzodzodzo ... dzo + ... 

I 
L / 

j items 
j items 

In 
$~+(~)v+(~)‘Jvdz, 

+2 

3 

( >JJ V dzo + ... 
b 

determining the two constants, it is imperative that 
the properties and roles of the substituted function 
G,,. in equations (15,) and (15,) be retained in the 
substituting function I/(x0, z,; x, z). First, V(x,, z. = 0; 
x, z) must equal G,, o(xo, z. = 0; x, z) at the boundary, 
which requires A to be 1. In addition, since equation 
(15,) is to be extended into the entire region, V must 
be positive and its derivative aV/az, negative (and 
importantly, nonzero) at all values of z, which leaves 
as the only possible choice B = - 1 (see Fig. 2). Thus, 

V(xo, zo; x, z) = G,(Z&; xo, zo; x, z) 

- G,(Z&; xo, zo; x, 4. (17) 

In brief, Gr,o is known (equation (16)), its role in 
equation ( 151) is replaced by a derived function V 
(equation (17)), and most importantly, in so doing, 
boundary conditions (lSj) for j 2 1 can all be ex- 
tended throughout the entire domain (Greenberg, 
1971). Integrating equations (lSj) for j > 1 success- 
ively: 

G,,i= Vdzo 
J 

(18,) 

G,,t=SG,,dzo=SSVdzodzo (182) 

Gz.3 = j-G,,&, = j-j-j-V dzodzodzo (18,) 

G,j = 
J 

G,j- 1 dzo = 
JU t 

... Vdzodzodzo ... dzo 
Y 

I 

j items 
j i*ems 

(18j) 

Substituting equation (18) back into the power expan- 
sion of G,, and differentiating it with respect to zo, 
yields equation (19): 

G&o, zo; x, z) = G,,o + 
( >J 

d 
& 

V dzo 

+(z)jJkJ i y , V dz,dz, ... dz, + ... 

j- 1 items 
j- 1 items 

= ff$ + $V + $(G, - G,,,). 
0 b b 

(19) 

Rearranging equation (19) yields a first-order ordi- 
nary differential equation (20), whose right hand side 
is made up of known functions G,,. and V. The 
solution can be readily obtained using the integrating 
factor (e-(“d’KL)ZO in this case) shown in (21), where the 
integrating constant is constrained to be zero at infin- 
ity, and integration by parts has been used in the 
second step: 

36 ---$Gz= aG, 0 

dz0 b 

y+$V -$G,,o (20) 
0 b b 

G&o, zo; x, 4 

= G,,o(xO, zo; x, z) - $exp 
b 

X I/(x0, 5; x, 4 exp (21) 

V dzodzo 

Substituting equation (21) into integral (52), and 
invoking the shifting behavior of the Dirac delta func- 
tion (x0 and z. are replaced by xs and z,, respectively), 
gives the final closed-form solution equation (22), in 
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which the known functions Gz,,, and V have been 
substituted in from equations (16) and (17). 

Cu(x, z) = Gz (ZR3; xs, zs; x, z) 

3; XS, 5; x, 4 - G, (ZA2; XS, 4; x, 41 exp 

where 

G (ZR,; xo, zo; x, z) = 

(zzo)(l -8)/Z 

b(cr - p + 2)(x - x0) I-, 

2a(zzo)(o’-8+w +-B+2 + z;-P+2) 

b(cc - p + 2)2(x - x0) - b(a - p + 2)2(x - x0) 1 
GAZA,; xo, zo; x, 4 = 

(zzo)(l -/w 

b(a - /!I + 2)(x - x0) Ifl 

2a(zzo)(~-8+2w 

1 [ exp 

a(Za-B+2 + z5-P+2) 

b(a - /I + 2)2(x - x0) - b(a - /I + 2)2(x - x0) 1 
with p = 1-P 

u-/3+2’ 

Attention should be paid to the evolution of the 
Green’s function arguments x0 and z. in the deriva- 
tion. Readers endeavoring to use equation (22) should 
take special care in modifying the arguments to match 
those in that equation (i.e., x0 + xs; z. + zs or 5). 

This new solution possesses several advantages 
over other solutions derived in the past for a ground 
level source (Horst and Slinn, 1984; Koch, 1989; 
Chrysikopoulos et al., 1992). It can be applied to 
a more general situation, such as arbitrary source 
height, while still maintaining programming and com- 
puting feasibility. The only function involved is the 
modified Bessel function of the first kind I, which is 
available as a subroutine in almost all programming 
languages or commercial computing software pack- 
ages. The integral in the solution can also be evalu- 
ated handily using Simpson’s rule or other higher 
order numerical schemes. Note that for zero depos- 
ition (vd = 0), the solution reduces to the total reflec- 
tion case G,(ZRJ; xs, zs; x, z), as expected. Moreover, 
it can be shown to reduce to other solutions that have 
been previously derived for a simplified case, the 
Gaussian deposition plume. 

7. GAUSSIAN DEPOSITION PLUME 

The Gaussian plume equation is a special case 
where both wind speed and eddy diffusivity are invari- 
ant with height (i.e., a = /I = 0, p = l/2). The eddy 
diffusion coefficient Kb in equation (10) is therefore 
equivalent to the constant eddy diffusivity K, (or b in 

respectively (Lin and Hildemann, 1996), which are 
listed in Table 2. By substituting in the two simplified 
kernels, and replacing vdjKb by vdjb, equation (22) 
becomes: 

Cu(x, z) = Gz(ZG5; xs, zs; x, z) 

- Gz(ZG6; XS, t; x, 41 ew 

(23) 

where (ZG,) and (ZG,) are the Green’s functions 
of the Gaussian plume for the total reflection and 
total adsorption cases. The subtraction inside the 
integral can be simplified: 

Cu(x, z) = G,(ZG5; xs, z,; x, z) - 

x exp 
( > 

-;t dl. (24) 

This can be shown to be the same equation as 
appears in the classic text in mathematical physics by 
Sommerfeld (1949), by changing the space variables 
x and z to t and x, respectively. The integration in 
equation (24) can be carried out explicitly and ex- 
pressed as a complementary error function erfc: 

z + zs + 2 Cvdx - d/al (25) 
present notation) of the Gaussian plume. Using iden- Equation (25) is the solution derived in the past for 
tities for a modified Bessel function of order + l/2, the Gaussian deposition plume (e.g., Smith, 1962; 
kernels (ZR,) and (ZA,) reduce to (ZG,) and (ZG,), Striven and Fisher, 1975; Ermak, 1977; Rao, 1981). 
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The two terms in equation (25) are both well-known 
in heat conduction as well, if the space variable x is 
changed to the time variable t. The first term is widely 
recognized, and the second term also appears fre- 
quently in the literature (e.g., t)zisik, 1968; Crank, 
1975; Seinfeld, 1986; Beck et al., 1992). 

8. DISCUSSION 

In Fig. 1, the asymptotic case of the analytical 
solution, equation (22) with a = /I = 0 and p = l/2 
(i.e., Gaussian plume type) is compared with another 
form of solution expressed as a complementary error 
function (equation (25)). All parameters are identical 
with Kb assigned to be the same as b (reason stated 
before). The command quad8, a numerical integration 
method using the adaptive recursive Newton-Cotes 
eight-panel rule in MATLAB, was used to evaluate 
the integral in equation (22). The four continuous lines 
are results obtained from equation (25) for various 
deposition velocities, while the stars are results cal- 
culated from equation (22). The identical “matching” 
of the two solutions in different forms for each of the 
deposition velocities validates the accuracy of both 
the derived solutions and the associated computer 
codes. 

The physics represented by equation (22) can be 
explained as follows. The first term represents concen- 
tration contributions from a totally reflecting plume. 
The second term with a minus sign represents the 
modification to the first term (total reflection) as a 
result of groundlevel depletion via deposition. The 
higher the deposition velocity ud, the greater the 
modification. The integrand in the second term con- 
tains a difference (subtraction) between the Green’s 

function for total reflection and that for total adsorp- 
tion. Figure 2 shows the typical profiles of these two 
Green’s functions at two distances downwind. Be- 
cause the magnitude of this difference is greatest near 
ground level and reduces upwards, the influence of the 
second term is expected to be most pronounced at low 
elevations. This is further illustrated by Fig. 3, where 
the integrand of equation (22), dummy variable 5, and 
elevation z are plotted as a contour surface. The area 
(shaded) under a given surface curve is equal to the 
integral of the second term at a fixed height. A smaller 
area, and thus a smaller modification, is seen for 
a higher elevation z. In other words, the shape of the 
concentration profile will resemble that for a totally 
reflecting plume at sufficiently high elevations. The 
effect of the source height zs can be deduced by its role 
in the lower integration limit. A plume emitted from 
a source located at a higher elevation will not be 
perturbed to a large extent by the ground at small 
distances downwind, as indicated by the smaller 
shaded area. 

Modeling applications of equation (22) can be 
demonstrated by considering an elevated infinite line 
source located at (xs = 10 m, zs = 50m). Pollutants 
are assumed to disperse freely in an unbounded at- 
mosphere (H -*co). Meteorological input parameters 
are arbitrarily chosen as: c( = 0.29, /I = 0.45, 
a = 1.5(ms-‘) (m-0.29), b = 5.0(m2 s-i) (m-0.45), 
Kb = 5.0(m2 s-i). Figure 4 shows the vertical concen- 
tration profiles of various deposition velocities at two 
distances downwind: x = 150 m (near-source field) 
and x = 500 m (far-away-from-source field). At 
x = 150 m, the plume has reached the ground and the 
vertical profile has begun to alter, due to surface 
depletion. The extent of the profile alteration depends 
on the magnitude of dry deposition. A pollutant with 

Fig. 1. Comparison of two solutions of Gaussian deposition equation (G( = j? = 0, p = 4) for four different 
deposition velocities (0, 0.01,0.03, and 0.05 m s-l): continuous lines-quation (25); star points--equation (22). 
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Fig. 2. Typical profiles (in vertical direction zc) of the Green’s functions for total reflection G,(ZRS) (solid 
line) and total adsorption G,(ZA2) (dotted line) at two distances downwind: (a) short distance; (b) long 

distance. Notice that the “effective source height” z is at 50m in this case. 

Fig. 3. A typical contour surface of the integrand of equation (22), dummy variable 5, and elevation z. 
Shaded area under a surface curve is equivalent to the integral of equation (22) at a fixed height. 

zero deposition velocity (dashed line) is totally reflec- 
ted back into the atmosphere (as seen from the zero- 
gradient, nonbending profile near the ground). By 
contrast, a pollutant with the highest deposition 
velocity (solid line) undergoes substantial depositional 
losses, thereby reducing the airborne concentrations. 
At a short distance downwind (Fig. 4a), emissions at 
higher elevations have not yet experienced the surface 
effect. Therefore, they maintain the same shape re- 
gardless of the magnitude of the deposition velocity. 
Only when pollutants have traveled sufficiently far 
downwind (Fig. 4b) is the effect of surface depletion 

seen at high elevations. Also, for contaminants with 
nonnegligible deposition velocities, the vertical con- 
centration maximum remains elevated above the 
earth’s surface (Ermak, 1977). Though not easy to 
measure in the field (Smith, 1962), this positive con- 
centration gradient near the ground has been con- 
firmed by experiments (Berkowitz and Prahm, 1978), 
and constitutes an important mechanism that most 
analytical dispersion models (other than the Gaussian 
plume model) are unable to simulate. 

Figure 5 shows the variations of downwind 
“breathing level” (z = 2m) concentrations with dry 
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Fig. 4. Variation of vertical concentration profiles with dry deposition velocities (dotted 
vd = Om s-r; dot-dashed line - u,, = 0.01 m s-r; dashed line - v,, = 0.03 m s-r; solid line 

0.05 m s-r): (a) x = 150 m (near-source field); (b) x = 500 m (far-away-from-source field). 
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Fig. 5. Variation of downwind breathing level concentration (z = 2m) with dry deposition velocities 
(dotted line - ud = 0 m s- ‘; dot-dashed line - vd = 0.01 ms-‘; dashed line - vd = 0.03 m s-r; solid 
line - ud = 0.05 m s-l). Notice that C,(x, z) = 0 for x < xS in accordance with the causality condition. 

deposition velocities. Airborne concentrations are 9. SUMMARY 
highest for a contaminant that is totally reflected from 
the ground (dashed line). Increasing the dry depos- An analytical solution is derived that solves the 
ition reduces the extent of human exposure. The 
location at which the peak concentration occurs 

atmospheric diffusion equation with height-depen- 
dent wind speed and eddy diffusivities, and with a 

moves closer to the source as depletion becomes 
greater, a result consistent with predictions obtained 

Robin-type boundary condition at the ground. The 

with the Gaussian plume solution (Ermak, 1977). 
solution consists of two relatively simple Green’s 
functions expressed in an integral form that is 
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amenable to computer programming for modeling Deng X. and Horne R. N. (1993) Well test analysis of hetero- 
applications. In the greatly simplified case where wind geneous reservoirs. In 68th Ann. Technical Conf. and 

speed and eddy diffusivities are invariant with height, Exhibition of the Society of Petroleum Engineers, 

the solution reduces to that derived in the past for the 
Houston, Texas, 3-6 October 1993. 

Gaussian deposition plume. Examining the physical 
Dettman J. W. (1988) Mathematical Methods in Physics and 

Engineering, p. 268. Dover Publications, New York. 
behavior represented by the new solution confirms Ermak D. L. (1977) An analytical model for air pollutant 

that the ground effect is most profound for pollutants 
dispersing near ground and for emissions from lower 
elevation sources. 

The new solution is in fact a result of a generalized 
mathematical scheme to analytically solve the atmo- 
spheric diffusion equation with dry deposition. The 
scheme, demonstrated in two dimensions, can be ex- 
tended by combining a crosswind dispersion factor for 
three-dimensional dispersion-deposition modeling. 
Since there is no restriction imposed on the source 
height, it is very useful for modeling the transport of 
pollutants released from arbitrary elevations. With 
slight modifications and appropriate manipulations 
of other Green’s functions, this generalized scheme 
can be extended further, accounting for inversion 
effects or leading to other useful solutions. 
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